Skip to content

Inference Profile Names

Complete reference for understanding how Pika names AWS Bedrock inference profiles for cost tracking and allocation.

Pika automatically creates named inference profiles by copying AWS's built-in inference profiles. These named profiles allow you to track costs for specific models in AWS Cost Explorer, enabling detailed cost allocation and analysis.

Inference profile names follow this pattern:

{stackName}-{profileName}

stackName

  • The kebab-case project name from pika-config.ts
  • Corresponds to pika.projNameKebabCase in your configuration
  • Example: pika-test, customer-portal-api, pika-chat-dev

profileName

  • Human-readable model identifier
  • Currently hardcoded by Pika (user configuration in future release)
  • Examples: claude-sonnet-4, claude-haiku-4-5, claude-sonnet-4-5

Given this configuration:

export const pikaConfig: PikaConfig = {
pika: {
projNameL: 'pika',
projNameKebabCase: 'pika',
// ... other config
}
};

When deployed with STAGE=test, the inference profiles will be named:

  • pika-test-claude-sonnet-4
  • pika-test-claude-haiku-4-5
  • pika-test-claude-sonnet-4-5

Pika automatically creates inference profiles for these models:

ModelProfile NameBase Model ID
Claude 4 Sonnetclaude-sonnet-4us.anthropic.claude-sonnet-4-20250514-v1:0
Claude 4.5 Haikuclaude-haiku-4-5us.anthropic.claude-haiku-4-5-20251001-v1:0
Claude 4.5 Sonnetclaude-sonnet-4-5us.anthropic.claude-sonnet-4-5-20250929-v1:0

Each inference profile is tagged with:

  1. Stack tags from config - All tags from stackTags.common and stackTags.pikaServiceTags in pika-config.ts
  2. Component tag - Automatically added: component: {ModelName}InferenceProfile

Given this stack configuration:

export const pikaConfig: PikaConfig = {
stackTags: {
common: {
'Environment': 'prod',
'CostCenter': 'engineering',
'Project': 'CustomerPortal'
},
pikaServiceTags: {
'Team': 'platform'
}
}
};

The pika-prod-claude-sonnet-4-5 inference profile will be tagged with:

{
"Environment": "prod",
"CostCenter": "engineering",
"Project": "CustomerPortal",
"Team": "platform",
"component": "Claude4_5SonnetInferenceProfile"
}
export const pikaConfig: PikaConfig = {
pika: {
projNameKebabCase: 'my-chatbot'
},
stackTags: {
common: {
'app': 'chatbot',
'env': 'production'
}
}
};

Resulting inference profile names:

  • my-chatbot-production-claude-sonnet-4
  • my-chatbot-production-claude-haiku-4-5
  • my-chatbot-production-claude-sonnet-4-5
export const pikaConfig: PikaConfig = {
pika: {
projNameKebabCase: 'customer-api'
},
stackTags: {
common: {
'Environment': '{stage}',
'Project': 'CustomerAPI',
'CostCenter': 'platform'
}
}
};

When deployed to different stages:

Dev (STAGE=dev):

  • customer-api-dev-claude-sonnet-4
  • customer-api-dev-claude-haiku-4-5
  • customer-api-dev-claude-sonnet-4-5

Production (STAGE=prod):

  • customer-api-prod-claude-sonnet-4
  • customer-api-prod-claude-haiku-4-5
  • customer-api-prod-claude-sonnet-4-5

Inference profile ARNs follow this format:

arn:aws:bedrock:{region}:{accountId}:application-inference-profile/{profileName}

Example:

arn:aws:bedrock:us-east-1:123456789012:application-inference-profile/pika-test-claude-sonnet-4-5

To predict your inference profile names:

  1. Find your stack name:

    • Look at pika.projNameKebabCase in pika-config.ts
    • Append the stage with a hyphen (e.g., -test, -prod)
    • Example: pika-test, customer-api-prod
  2. Add the profile name:

    • Use the hardcoded profile names: claude-sonnet-4, claude-haiku-4-5, or claude-sonnet-4-5
    • Join with a hyphen: {stackName}-{profileName}
  3. Example calculation:

    pika.projNameKebabCase = "my-api"
    STAGE = "prod"
    profileName = "claude-sonnet-4-5"
    Result: "my-api-prod-claude-sonnet-4-5"

Find costs for specific models:

  1. Filter by inference profile name
  2. Group costs by environment, project, or team
  3. Compare costs across different models

See Track AI Model Costs for detailed instructions.

Use tags to:

  • Group all inference profiles for a project
  • Filter by environment or cost center
  • Identify resources by team or owner

Create custom cost allocation reports that:

  • Break down AI costs by model
  • Compare environments (dev vs prod)
  • Track costs over time per model